This PYQ is from

UGC-NET-Paper1

Maths

UGC-NET-Paper1 PYQs

Year-wise PYQs

Section-wise PYQs

Read the Question carefully and choose the correct option.
If √(4)^n 256, then √n is equal to :

(1) √2
(2) 2√2
(3) 2
(4) 4

यदि √(4)^n 256, तो √n बराबर है:

(1)√2
(2)2√2
(3)2
(4)4
This Question came in
UGC-NET-11-November-2020-Shift-1-Q22
UGC-NET Paper 1 Full Course

To-the-point Video Lectures

Topic-wise PYQs

24x7 Doubt Solving

Detailed Explanation & Answer
The left side can be rewritten as: √(4^n) = (4^n)^(1/2) = 4^(n/2).

We know that: 256 = 4^4
Now we have: 4^(n/2) = 4^4.

Since the bases are the same, we can equate the exponents:
n/2 = 4.
n: n = 4 * 2 = 8.

Now, we need to calculate √n:
√n = √8 = √(4 * 2) = 2√2.
बाईं ओर को इस प्रकार फिर से लिखा जा सकता है: √(4^n) = (4^n)^(1/2) = 4^(n/2)।

हम जानते हैं कि: 256 = 4^4
अब हमारे पास है: 4^(n/2) = 4^4.

चूँकि आधार समान हैं, हम घातांकों को समान कर सकते हैं:
एन/2 = 4.
एन: एन = 4 * 2 = 8.

अब, हमें √n की गणना करने की आवश्यकता है:
√n = √8 = √(4 * 2) = 2√2.
Hello, world! This is a toast message.