This PYQ is from

UGC-NET-Paper1

Maths

UGC-NET-Paper1 PYQs

Year-wise PYQs

Section-wise PYQs

Read the Question carefully and choose the correct option.
If 5th term of an Arithmetic progression (AP) series is 16 and 9th term is 22, then find the seventh (7th) term of the series.

1. 25
2. 22
3. 19
4. 205

यदि किसी समांतर श्रेणी (एपी) श्रृंखला में 5वाँ पद 6 और 9 वाँ पद 22 है, तो इस श्रृंखला के 7वें पद को ज्ञात कीजिए।

1. 25
2. 22
3. 19
4. 205
This Question came in
UGC-NET-Commerce-04-March-2023-Shift-2-Q22
UGC-NET Paper 1 Full Course

To-the-point Video Lectures

Topic-wise PYQs

24x7 Doubt Solving

Detailed Explanation & Answer
Given,
5th term = 16
9th term = 22

Let's assume
First Term = a
Common Difference = d

the formula for getting the nth term
nth term = first term + (n - 1) x d

Putting the 5th term value in the formula
16 = a + (5 - 1) d
or a + 4d = 16
Putting the 9th term value in the formula
22 = a + (9 - 1) d
or a + 8d = 22
Solving both equations we get a = 10 and d = 3/2

Getting 7th term = 10 + (7 - 1) 3/2 = 19
दिया गया,
5वाँ पद = 16
9वाँ पद = 22

चलो मान लो
प्रथम पद = a
सामान्य अंतर = d

nवाँ पद प्राप्त करने का सूत्र
nवाँ पद = पहला पद + (n - 1) x d

सूत्र में पाँचवाँ पद मान डालना
16 = a + (5 - 1) d
या a + 4d = 16
सूत्र में 9वें पद का मान डालना
22 = a + (9 - 1) d
या a + 8d = 22
दोनों समीकरणों को हल करने पर हमें a = 10 और d = 3/2 प्राप्त होता है

7वाँ पद प्राप्त करना = 10 + (7 - 1) 3/2 = 19
Hello, world! This is a toast message.