We are given:
The average of two numbers, a and b, is 22. So, (a + b) / 2 = 22, which means a + b = 44.
60% of a equals 50% of b, so 0.6a = 0.5b.
Now, solve these equations:
From the first equation, a + b = 44.
From the second equation, 0.6a = 0.5b, which simplifies to a = (5/6)b.
Substitute a = (5/6)b into a + b = 44:
=> (5/6)b + b = 44.
(11/6)b = 44.
b = (44 * 6) / 11 = 24.
Substitute b = 24 into a = (5/6)b:
a = (5/6) * 24 = 20.
The product of a and b:
a * b = 20 * 24 = 480.
हम दे रहे हैं:
दो संख्याओं, a और b, का औसत 22 है। इसलिए, (a + b) / 2 = 22, जिसका अर्थ है a + b = 44।
a का 60%, b के 50% के बराबर है, इसलिए 0.6a = 0.5b।
अब, इन समीकरणों को हल करें:
पहले समीकरण से, a + b = 44.
दूसरे समीकरण से, 0.6a = 0.5b, जो a = (5/6)b को सरल बनाता है।
a + b = 44 में a = (5/6)b रखें:
=> (5/6)b + b = 44।
(11/6)b = 44.
a = (44*6)/11 = 24.
a = (5/6)b में b = 24 रखें:
a = (5/6) * 24 = 20.
a और b का उत्पाद:
a * b = 20 * 24 = 480.