This PYQ is from

UGC-NET-Paper1

Maths

UGC-NET-Paper1 PYQs

Year-wise PYQs

Section-wise PYQs

Read the Question carefully and choose the correct option.
Let L and M be the sum and average of four consecutive odd numbers (a, b, c and d) respectively and, P and Q be the sum and average of three consecutive even numbers (x, y and z) respectively. If M= Q-6 and P=L-16, then M=

1. 32
2. 34
3. 36
4. 30

मान लीजिए L और M क्रमशः चार लगातार विषम संख्याओं (a, b, c और d) का योग और औसत हैं और, P और Q क्रमशः तीन लगातार सम संख्याओं (x, y और z) का योग और औसत हैं। यदि M=Q-6 और P=L-16, तो M=

1. 32
2. 34
3. 36
4. 30
This Question came in
UGC-NET-Commerce-03-September-2024-Shift-1-Q40
UGC-NET Paper 1 Full Course

To-the-point Video Lectures

Topic-wise PYQs

24x7 Doubt Solving

Detailed Explanation & Answer
Let the four consecutive odd numbers be:
a = n (first odd number), b = n + 2, c = n + 4, d = n + 6.

The sum L of these numbers is:
L = a + b + c + d = n + (n + 2) + (n + 4) + (n + 6) = 4n + 12.

The average M of these numbers is:
M = L / 4 = (4n + 12) / 4 = n + 3.

Let the three consecutive even numbers be:
x = m (first even number), y = m + 2, z = m + 4.

The sum P of these numbers is:
P = x + y + z = m + (m + 2) + (m + 4) = 3m + 6.

The average Q of these numbers is:
Q = P / 3 = (3m + 6) / 3 = m + 2.

We have two equations based on the problem statement:

M = Q - 6
P = L - 16
Substituting the expressions for M and Q into the first equation:
n + 3 = (m + 2) - 6.
n + 3 = m - 4.
n = m - 7 (Equation 1).

Substitute in the second equation Now, substitute L and P into the second equation:
3m + 6 = (4n + 12) - 16.
3m + 6 = 4n - 4.
3m + 10 = 4n (Equation 2).

Substituting n = m - 7 from Equation 1 into Equation 2:
3m + 10 = 4(m - 7).
3m + 10 = 4m - 28.
10 + 28 = 4m - 3m.
Thus, 38 = m.

m = 38 back into Equation 1 to find n:
n = 38 - 7 = 31.
M = n + 3 = 31 + 3 = 34.
माना कि चार क्रमागत विषम संख्याएँ हैं:
a = n (पहली विषम संख्या), b = n + 2, c = n + 4, d = n + 6।

इन संख्याओं का योग L है:
L = a + b + c + d = n + (n + 2) + (n + 4) + (n + 6) = 4n + 12.

इन संख्याओं का औसत M है:
M = L / 4 = (4n + 12) / 4 = n + 3.

माना कि तीन क्रमागत सम संख्याएँ हैं:
x = m (पहली सम संख्या), y = m + 2, z = m + 4.

इन संख्याओं का योग P है:
P = x + y + z = m + (m + 2) + (m + 4) = 3m + 6.

इन संख्याओं का औसत Q है:
Q = P / 3 = (3m + 6) / 3 = m + 2.

समस्या कथन पर आधारित हमारे पास दो समीकरण हैं:

M = Q - 6
P = L - 16
पहले समीकरण में M और Q के व्यंजकों को प्रतिस्थापित करना:
n + 3 = (m + 2) - 6.
n + 3 = m - 4.
n = m - 7 (समीकरण 1).

दूसरे समीकरण में प्रतिस्थापित करें अब, दूसरे समीकरण में L और P प्रतिस्थापित करें:
3m + 6 = (4n + 12) - 16.
3m + 6 = 4n - 4.
3m + 10 = 4n (समीकरण 2)।

समीकरण 1 से समीकरण 2 में n = m - 7 प्रतिस्थापित करने पर:
3m + 10 = 4(m - 7).
3m + 10 = 4m - 28.
10 + 28 = 4m - 3m.
इस प्रकार, 38 = m.

n ज्ञात करने के लिए m = 38 वापस समीकरण 1 में जाएँ:
n = 38 - 7 = 31.
m = n + 3 = 31 + 3 = 34.
Hello, world! This is a toast message.