This PYQ is from

UGC-NET-Paper1

Maths

UGC-NET-Paper1 PYQs

Year-wise PYQs

Section-wise PYQs

Read the Question carefully and choose the correct option.
A certain sum of money doubles in 4 years at a compound rate of interest per annum. The rate of interest is [Given ; 2^1/2 = 1.414, 2^1/4 = 1.1892]

(1) ~149%
(2) ~16.8%
(3) ~18.9%
(4) ~12.9%

एक निश्चित धनराशि प्रति वर्ष चक्रवृद्धि ब्याज दर पर 4 वर्षों में दोगुनी हो जाती है। ब्याज की दर है [दिया गया है; 2^1/2 = 1.414, 2^1/4 = 1.1892]

(1) ~149%
(2) ~16.8%
(3) ~18.9%
(4) ~12.9%
This Question came in
UGC-NET-English-06-December-2023-Shift-1-Q45
UGC-NET Paper 1 Full Course

To-the-point Video Lectures

Topic-wise PYQs

24x7 Doubt Solving

Detailed Explanation & Answer
To find the rate of interest, we can use the compound interest formula:

Amount = Principal * (1 + Rate/100)^Time

Given that the principal doubles in 4 years, the amount becomes 2 times the principal. So, we have:
2P = P * (1 + Rate/100)^4

Dividing both sides by P:
2 = (1 + Rate/100)^4

Taking the fourth root of both sides:
2^(1/4) = 1 + Rate/100

Given: 2^(1/4) = 1.1892
So, 1.1892 = 1 + Rate/100
Rate/100 = 1.1892 - 1
Rate/100 = 0.1892
Rate = 0.1892 * 100
Rate ≈ 18.92%
ब्याज दर ज्ञात करने के लिए, हम चक्रवृद्धि ब्याज सूत्र का उपयोग कर सकते हैं:

राशि = मूलधन * (1 + दर/100)^समय

यह देखते हुए कि मूलधन 4 वर्षों में दोगुना हो जाता है, राशि मूलधन से 2 गुना हो जाती है। तो हमारे पास:
2पी = पी * (1 + दर/100)^4

दोनों पक्षों को P से विभाजित करने पर:
2 = (1 + दर/100)^4

दोनों पक्षों का चौथा मूल लेना:
2^(1/4) = 1 + दर/100

दिया गया है: 2^(1/4) = 1.1892
तो, 1.1892 = 1 + दर/100
दर/100 = 1.1892 - 1
दर/100 = 0.1892
दर = 0.1892 * 100
दर ≈ 18.92%
Hello, world! This is a toast message.