From the table, the number of items sold by each person on Thursday is:
B = 1020
C = unknown
E = 320
According to the question, the ratio of the number of items sold by B and C together to the number of items sold by C and E together on Thursday is 2:1.
Let the number of items sold by C on Thursday be x.
According to the question, we have:
Items sold by B and C together = 1020 + x
Items sold by C and E together = x + 320
Since the ratio of (B + C) to (C + E) is 2:1,
we can set up the equation:
(1020 + x) / (x + 320) = 2 / 1
1020 + x = 2 * (x + 320)
1020 + x = 2x + 640
1020 - 640 = 2x - x
380 = x
Therefore, the number of items sold by C on Thursday is 380.
तालिका से, गुरुवार को प्रत्येक व्यक्ति द्वारा बेची गई वस्तुओं की संख्या है:
B = 1020
C = अज्ञात
E = 320
प्रश्न के अनुसार, गुरुवार को B और C द्वारा एक साथ बेची गई वस्तुओं की संख्या और C और E द्वारा एक साथ बेची गई वस्तुओं की संख्या का अनुपात 2:1 है।
माना गुरुवार को C द्वारा बेची गई वस्तुओं की संख्या x है।
प्रश्न के अनुसार, हमारे पास है:
B और C द्वारा एक साथ बेची गई वस्तुएँ = 1020 + x
C और E द्वारा एक साथ बेची गई वस्तुएँ = x + 320
चूँकि (B + C) से (C + E) का अनुपात 2:1 है,
हम समीकरण स्थापित कर सकते हैं:
(1020 + x) / (x + 320) = 2/1
1020 + x = 2 * (x + 320)
1020 + x = 2x + 640
1020 - 640 = 2x - x
380 = x
इसलिए, गुरुवार को C द्वारा बेची गई वस्तुओं की संख्या 380 है।